博客
关于我
【图像分割】心脏中心线提取
阅读量:274 次
发布时间:2019-03-01

本文共 886 字,大约阅读时间需要 2 分钟。

中心线提取是图像分割的重要步骤之一,中心线提取的好坏直接影响图像分割效果,因此研究中心线提取是很关键的问题

中心线提取大致分为五种:

一 基于拓扑细化的方法

使用形态学腐蚀操作来不断去除物体的边界,直到仅剩其骨架,由于该方法是一个迭代过程,所以会很耗时,且易受图像质量的影响。

二 基于距离变换的方法

通过定位距离物体边界最远的一组点来确定物体的中心线,通常采用欧式距离,可以理解为一系列最大内切球的球心构成了物体的中心线,有代表性的是基于边界的距离变换和基于源点的距离变换

三 基于路径规划的方法

应用于虚拟内窥和机器人路径规划

四 基于追踪的方法

通过判断管状物体的局部方向获得当前位置近似的中心线趋势,并结合图像中物体的局部信息,得到当前位置处物体横截面的中心点。缺点是在追踪过程中未考虑全局信息,会导致中心线提取不完整

clc;I = rgb2gray(imread ('22.bmp'));Id = double(I);%高斯滤波h = fspecial('gaussian',[3,3], 2);Ig = imfilter(Id, h);%多尺度血管骨架提取Ivessel = FrangiFilter2D(Ig);figure,imshow(Ivessel);%腐蚀se = strel('disk', 2);bw2 = imerode(Ivessel, se);%细化bw3 = bwmorph(bw2,'thin',inf);%消除垂直于血管走向的干扰bw4 = ThreeLinkFilter(bw3);%消除面积比较小的联通分支bw5 = bwareaopen(bw4, 256);figure,imshow(bw5);%与源图像叠加Iout = imadd(Id, double(bw5)*255);%显示结果figure,%imshow(Iout, [0, 255]);imshow(Ivessel, [0, 255]);

完整代码或者代写添加QQ1575304183

往期回顾>>>>>>

【图像增强】PSO寻优ACE的图像增强matlab源码

你可能感兴趣的文章
MySQL 内核深度优化
查看>>
mysql 内连接、自然连接、外连接的区别
查看>>
mysql 写入慢优化
查看>>
mysql 分组统计SQL语句
查看>>
Mysql 分页
查看>>
Mysql 分页语句 Limit原理
查看>>
MySql 创建函数 Error Code : 1418
查看>>
MySQL 创建新用户及授予权限的完整流程
查看>>
mysql 创建表,不能包含关键字values 以及 表id自增问题
查看>>
mysql 删除日志文件详解
查看>>
mysql 判断表字段是否存在,然后修改
查看>>
MySQL 到底能不能放到 Docker 里跑?
查看>>
mysql 前缀索引 命令_11 | Mysql怎么给字符串字段加索引?
查看>>
MySQL 加锁处理分析
查看>>
mysql 协议的退出命令包及解析
查看>>
mysql 参数 innodb_flush_log_at_trx_commit
查看>>
mysql 取表中分组之后最新一条数据 分组最新数据 分组取最新数据 分组数据 获取每个分类的最新数据
查看>>
MySQL 命令和内置函数
查看>>
mysql 四种存储引擎
查看>>
MySQL 在并发场景下的问题及解决思路
查看>>