博客
关于我
【图像分割】心脏中心线提取
阅读量:274 次
发布时间:2019-03-01

本文共 886 字,大约阅读时间需要 2 分钟。

中心线提取是图像分割的重要步骤之一,中心线提取的好坏直接影响图像分割效果,因此研究中心线提取是很关键的问题

中心线提取大致分为五种:

一 基于拓扑细化的方法

使用形态学腐蚀操作来不断去除物体的边界,直到仅剩其骨架,由于该方法是一个迭代过程,所以会很耗时,且易受图像质量的影响。

二 基于距离变换的方法

通过定位距离物体边界最远的一组点来确定物体的中心线,通常采用欧式距离,可以理解为一系列最大内切球的球心构成了物体的中心线,有代表性的是基于边界的距离变换和基于源点的距离变换

三 基于路径规划的方法

应用于虚拟内窥和机器人路径规划

四 基于追踪的方法

通过判断管状物体的局部方向获得当前位置近似的中心线趋势,并结合图像中物体的局部信息,得到当前位置处物体横截面的中心点。缺点是在追踪过程中未考虑全局信息,会导致中心线提取不完整

clc;I = rgb2gray(imread ('22.bmp'));Id = double(I);%高斯滤波h = fspecial('gaussian',[3,3], 2);Ig = imfilter(Id, h);%多尺度血管骨架提取Ivessel = FrangiFilter2D(Ig);figure,imshow(Ivessel);%腐蚀se = strel('disk', 2);bw2 = imerode(Ivessel, se);%细化bw3 = bwmorph(bw2,'thin',inf);%消除垂直于血管走向的干扰bw4 = ThreeLinkFilter(bw3);%消除面积比较小的联通分支bw5 = bwareaopen(bw4, 256);figure,imshow(bw5);%与源图像叠加Iout = imadd(Id, double(bw5)*255);%显示结果figure,%imshow(Iout, [0, 255]);imshow(Ivessel, [0, 255]);

完整代码或者代写添加QQ1575304183

往期回顾>>>>>>

【图像增强】PSO寻优ACE的图像增强matlab源码

你可能感兴趣的文章
Netcraft报告: let's encrypt和Comodo发布成千上万的网络钓鱼证书
查看>>
Netem功能
查看>>
netfilter应用场景
查看>>
Netflix:当你按下“播放”的时候发生了什么?
查看>>
Netflix推荐系统:从评分预测到消费者法则
查看>>
netframework 4.0内置处理JSON对象
查看>>
Netgear WN604 downloadFile.php 信息泄露漏洞复现(CVE-2024-6646)
查看>>
Netgear wndr3700v2 路由器刷OpenWrt打造全能服务器(十一)备份
查看>>
netlink2.6.32内核实现源码
查看>>
netmiko 自动判断设备类型python_Python netmiko模块的使用
查看>>
NetMizer 日志管理系统 多处前台RCE漏洞复现
查看>>
NetMizer-日志管理系统 dologin.php SQL注入漏洞复现(XVE-2024-37672)
查看>>
Netpas:不一样的SD-WAN+ 保障网络通讯品质
查看>>
netron工具简单使用
查看>>
NetScaler MPX Gateway Configuration
查看>>
NetScaler的常用配置
查看>>
netsh advfirewall
查看>>
NETSH WINSOCK RESET这条命令的含义和作用?
查看>>
netstat kill
查看>>
netstat命令用法详解
查看>>