博客
关于我
【图像分割】心脏中心线提取
阅读量:274 次
发布时间:2019-03-01

本文共 886 字,大约阅读时间需要 2 分钟。

中心线提取是图像分割的重要步骤之一,中心线提取的好坏直接影响图像分割效果,因此研究中心线提取是很关键的问题

中心线提取大致分为五种:

一 基于拓扑细化的方法

使用形态学腐蚀操作来不断去除物体的边界,直到仅剩其骨架,由于该方法是一个迭代过程,所以会很耗时,且易受图像质量的影响。

二 基于距离变换的方法

通过定位距离物体边界最远的一组点来确定物体的中心线,通常采用欧式距离,可以理解为一系列最大内切球的球心构成了物体的中心线,有代表性的是基于边界的距离变换和基于源点的距离变换

三 基于路径规划的方法

应用于虚拟内窥和机器人路径规划

四 基于追踪的方法

通过判断管状物体的局部方向获得当前位置近似的中心线趋势,并结合图像中物体的局部信息,得到当前位置处物体横截面的中心点。缺点是在追踪过程中未考虑全局信息,会导致中心线提取不完整

clc;I = rgb2gray(imread ('22.bmp'));Id = double(I);%高斯滤波h = fspecial('gaussian',[3,3], 2);Ig = imfilter(Id, h);%多尺度血管骨架提取Ivessel = FrangiFilter2D(Ig);figure,imshow(Ivessel);%腐蚀se = strel('disk', 2);bw2 = imerode(Ivessel, se);%细化bw3 = bwmorph(bw2,'thin',inf);%消除垂直于血管走向的干扰bw4 = ThreeLinkFilter(bw3);%消除面积比较小的联通分支bw5 = bwareaopen(bw4, 256);figure,imshow(bw5);%与源图像叠加Iout = imadd(Id, double(bw5)*255);%显示结果figure,%imshow(Iout, [0, 255]);imshow(Ivessel, [0, 255]);

完整代码或者代写添加QQ1575304183

往期回顾>>>>>>

【图像增强】PSO寻优ACE的图像增强matlab源码

你可能感兴趣的文章
Nginx搭建RTMP服务器+FFmpeg实现海康威视摄像头预览
查看>>
Nginx搭建静态资源映射实现远程访问服务器上的图片资源
查看>>
nginx日志不支持中文
查看>>
nginx日志分割并定期删除
查看>>
Nginx日志分析系统---ElasticStack(ELK)工作笔记001
查看>>
Nginx日志按天分割
查看>>
Nginx映射本地json文件,配置解决浏览器跨域问题,提供前端get请求模拟数据
查看>>
Nginx映射本地静态资源时,浏览器提示跨域问题解决
查看>>
Nginx是什么?有哪些核心技术?
查看>>
nginx最最最详细教程来了
查看>>
Nginx服务器---正向代理
查看>>
Nginx服务器上安装SSL证书
查看>>
Nginx服务器基本配置
查看>>
Nginx服务器的安装
查看>>
Nginx架构详解
查看>>
Nginx标准配置文件(包括反向代理、大文件上传、Https证书配置、文件预览等)
查看>>
Nginx概述及安装配置
查看>>
Nginx模块 ngx_http_limit_conn_module 限制连接数
查看>>
Nginx模块 ngx_http_limit_req_module 限制请求速率
查看>>
nginx次级域名部署dva静态项目!
查看>>