博客
关于我
【图像分割】心脏中心线提取
阅读量:274 次
发布时间:2019-03-01

本文共 886 字,大约阅读时间需要 2 分钟。

中心线提取是图像分割的重要步骤之一,中心线提取的好坏直接影响图像分割效果,因此研究中心线提取是很关键的问题

中心线提取大致分为五种:

一 基于拓扑细化的方法

使用形态学腐蚀操作来不断去除物体的边界,直到仅剩其骨架,由于该方法是一个迭代过程,所以会很耗时,且易受图像质量的影响。

二 基于距离变换的方法

通过定位距离物体边界最远的一组点来确定物体的中心线,通常采用欧式距离,可以理解为一系列最大内切球的球心构成了物体的中心线,有代表性的是基于边界的距离变换和基于源点的距离变换

三 基于路径规划的方法

应用于虚拟内窥和机器人路径规划

四 基于追踪的方法

通过判断管状物体的局部方向获得当前位置近似的中心线趋势,并结合图像中物体的局部信息,得到当前位置处物体横截面的中心点。缺点是在追踪过程中未考虑全局信息,会导致中心线提取不完整

clc;I = rgb2gray(imread ('22.bmp'));Id = double(I);%高斯滤波h = fspecial('gaussian',[3,3], 2);Ig = imfilter(Id, h);%多尺度血管骨架提取Ivessel = FrangiFilter2D(Ig);figure,imshow(Ivessel);%腐蚀se = strel('disk', 2);bw2 = imerode(Ivessel, se);%细化bw3 = bwmorph(bw2,'thin',inf);%消除垂直于血管走向的干扰bw4 = ThreeLinkFilter(bw3);%消除面积比较小的联通分支bw5 = bwareaopen(bw4, 256);figure,imshow(bw5);%与源图像叠加Iout = imadd(Id, double(bw5)*255);%显示结果figure,%imshow(Iout, [0, 255]);imshow(Ivessel, [0, 255]);

完整代码或者代写添加QQ1575304183

往期回顾>>>>>>

【图像增强】PSO寻优ACE的图像增强matlab源码

你可能感兴趣的文章
Nginx 的优化思路,并解析网站防盗链
查看>>
Nginx 的配置文件中的 keepalive 介绍
查看>>
Nginx 相关介绍(Nginx是什么?能干嘛?)
查看>>
Nginx 知识点一网打尽:动静分离、压缩、缓存、跨域、高可用、性能优化...
查看>>
nginx 禁止以ip形式访问服务器
查看>>
NGINX 端口负载均衡
查看>>
Nginx 结合 consul 实现动态负载均衡
查看>>
Nginx 负载均衡与权重配置解析
查看>>
Nginx 负载均衡详解
查看>>
Nginx 负载均衡配置详解
查看>>
nginx 配置 单页面应用的解决方案
查看>>
nginx 配置dist 加上跨域配置
查看>>
nginx 配置https(一)—— 自签名证书
查看>>
nginx 配置~~~本身就是一个静态资源的服务器
查看>>
Nginx 配置服务器文件上传与下载
查看>>
Nginx 配置清单(一篇够用)
查看>>
Nginx 配置解析:从基础到高级应用指南
查看>>
Nginx 集成Zipkin服务链路追踪
查看>>
nginx 集群配置方式 静态文件处理
查看>>
Nginx+Django-Python+BPMN-JS的整合工作流实战项目
查看>>